ポリビニルアルコール・アクリル酸・メタクリル酸メチル共重合体

POVACOAT®

(DAIDO) 大同化成工業株式会社

1. 一般情報

1-1) 一般名及び化学名

一般名:PVA copolymer(PVAコポリマー)

化学名:ポリビニルアルコール・アクリル酸・メタクリル酸メチル共重合体

1-2) 公定書・申請書への登録状況と使用実績

〇医薬品添加物規格:収載番号109120(2012年12月 新規収載)

〇日本MF登録:登録番号219MF20003 (Type F)

〇米国DMF登録:登録番号18033

〇使用実績:72 mg/day(投与経路:経口投与)

2. 品種一覧

O品種一覧

Туре	F	MP	FM(開発品)	SP(開発品)	FL(開発品)
性状(外観)	白色〜帯黄白色 の塊又は粉末	白色〜帯黄白色 の粉末	白色〜微黄白色 の粉末	白色の粉末	微黄色透明の液 体
規格	薬添規	薬添規	薬添規	薬添規	別紙規格
表示粘度 (mPa·s)	5.5	5.5	5.5	5.5	5.5
平均分子量	約40.000	約40.000	約40.000	約40.000	約40.000
平均粒子径	約1.5 mm	約125 µm	約26 μ m	約20 μ m	
用途	フィルムコーティング 湿式結合剤	湿式結合剤 固体分散体基剤	湿式·乾式 結合剤	直打用結合剤	フィルムコーティング 湿式結合剤

3. 最近の適用事例

Film coating

Tablet Granules Small particle

酸素バリア効果

(マクロライド系抗生物質)

水蒸気バリア効果

(結晶構造の安定化、包装の簡素化)

においの抑制効果

(生薬配合成分への適用)

外観安定性

(水分膨張による錠剤の割れ防止)

POVACOAT

Binder

Wet granulation Dry granulation Direct compression

錠剤の高硬度化

(薬物高含量製剤)

口腔内崩壊錠

(実用化検討)

打錠障害抑制

(スティッキング抑制)

Solid dispersion

Hot melt

実用化検討中

(海外が先行:欧・米・中国・シン ガポールなど)

4. 物理化学的性質

4-1)粘度特性とその他添加剤との粘度比較

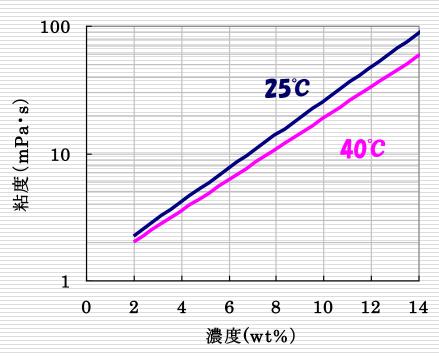


表:水溶液における粘度比較(25℃)

	6wt%	9wt%	12wt%
POVA	7	21	64
TC-5R	60	200	600
HPC-L	82	375	975
HPC-SL	34	83	260
PVP K30	4	6	8
TC-5E	13	31	66

図:水溶液の濃度と粘度の関係

POVACOAT®は、各種水溶性高分子と比べ、比較的低粘度を示します。そのため、高濃度での使用が可能です。

また、エタノールを30v/v%まで添加可能であり、エタノールを添加することで曳糸性及び付着性の低減が期待できます。

4. 物理化学的性質

4-2)皮膜の気体透過性(酸素)

試験条件:膜厚100μm、25℃

	透過係数
POVACOAT	6.7
POVACOAT + 10% TiO ₂	25
PVA	21
НРМС	5600
EVA	2

単位:(cc·m/m²·s·Pa)(×10¹⁵)

4-3)皮膜の気体透過性(水蒸気)

試験条件:膜厚75μm、40℃75%RH

	透過量
POVACOAT	83.1
POVACOAT + 10% Talc	55.4
POVACOAT + 30% Talc	38.4
POVACOAT + 50% Talc	19.1
НРМС	900

単位:(g/m²·24h)

4-4)皮膜の引張強度と伸度

a) 強度

(単位:N/mm²)

b) 伸度

(単位:%)

	40%RH	50%RH	75 %RH
POVA	45	25	20
НРМС	50	31	15

	40%RH	50%RH	75 %RH
POVA	10	50	100
НРМС	1.5	5.1	3.2

<試験条件>膜厚:65μm、引張速度:25mm/min、測定温度:25℃

5. フィルムコーティング用途への適用例

5-1)酸素遮断効果

5-2)においのマスキング効果

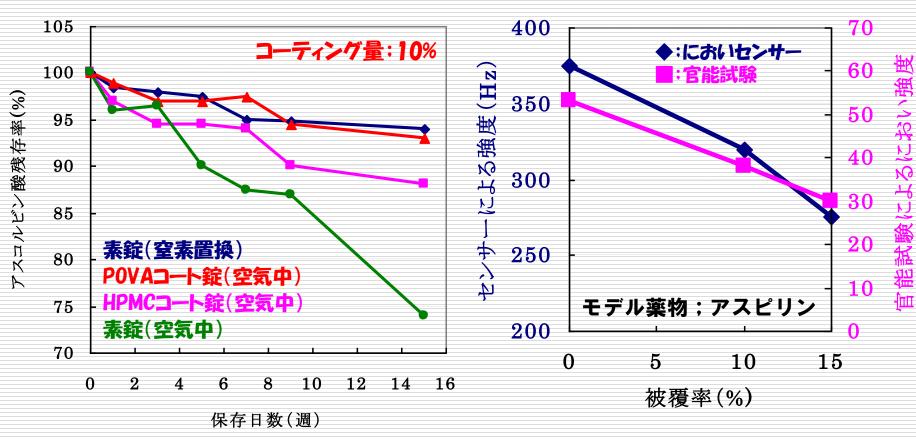


図:アスコルビン酸の安定性試験結果

図:においセンサー及び官能試験結果

酸素遮断には10%、においのマスキングには15%コーティングで効果を確認。 また、ウィスカーの抑制には5%コーティングで効果を確認。

5. フィルムコーティング用途への適用例

5-3)皮膜の透湿特性

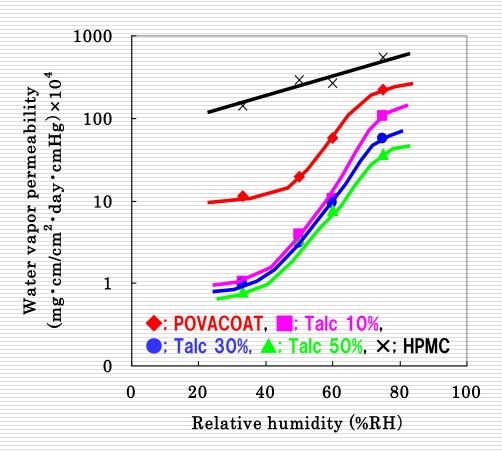


図:相対湿度に対する水分透過係数

5-4)コーティング剤の水分透過量の比較

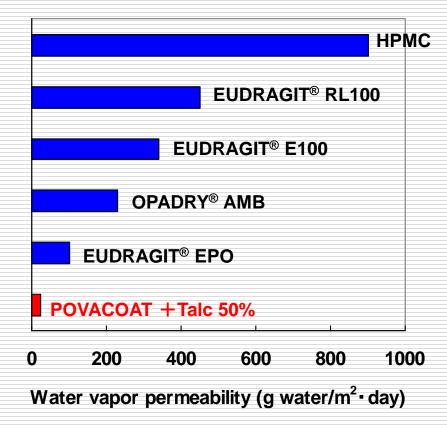


図:水分透過量の比較(75%RH)

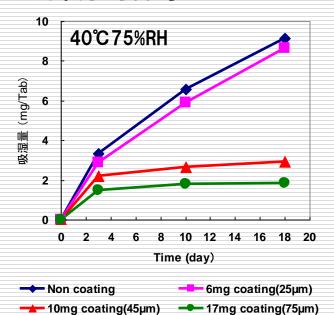
タルク添加により、高湿度下においても防湿効果を発揮します。なお、タルクを50%添加した場合(POVA:タルク=1:1)、各種コーティング基剤に比べて最高の防湿効果を発揮します

5. フィルムコーティング用途への適用例

5-5)コーティング実施例(防湿効果)

錠剤組成

アスコルビン酸(モデル薬物): 50.0%


硫酸銅(酸化促進剤): 2.5%

乳糖: 27.3%, コーンスターチ: 11.7%

POVA Type SP(結合剤): 8.0%

ステアリン酸マグネシウム: 0.5%

錠剤サイズ: 8 φ 12R 200mg

操作条件(DRC-500)

仕込み量: 3.85kg、風量: 3.6m³/min

給気温度: 70℃、排気温度: 47℃

アトマイズエアー: 120L/min(0.2MPa)

パターンエアー: 110L/min(0.16MPa)

ドラム回転数: 12rpm、スプレー速度: 30g/min

コーティング液濃度: 14%

(POVA 7%、Talc 7%)、(エタノール 25%)

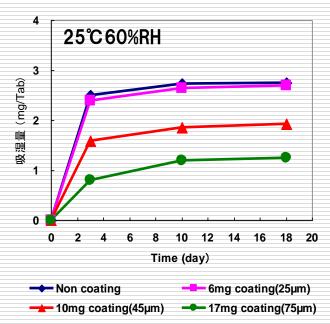


図:コーティング量と錠剤の吸湿量の関係

6. 結合剤用途への適用

- 1)結合液量と操作条件によってPOVACOAT糊添加、MPの粉添加によっても過剰な粒子成長をしない・・・・安定した造粒物が得られる
- 2)打錠障害の低減
- 3)硬度と崩壊性のバランス
- 4)MPは機能性製剤(例OD錠)や球形造粒に優れた機能を有する

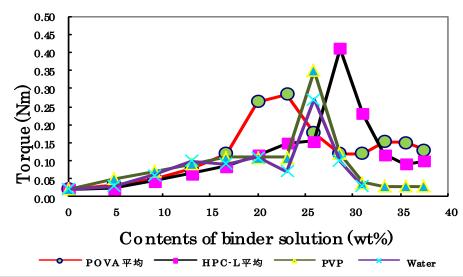
6. 結合剤用途への適用

結合液の基礎物性(粘度)

Table Viscosity (mPa·s)comparison among POVA, HPC-L, HPC-SL, and PVP

Conc. (w/v%)	POVA	HPC-L	HPC-SL	PVP(K-30)
6	7.1	82	33.5	4.0
9	21	375	83	6.0
12	63.5	975	260	8.0
18	370	12,740*)	1,940 ^{*)}	16.0*)
22.2	1,525	72,100 ^{*)}	8,140* ⁾	26.5*)

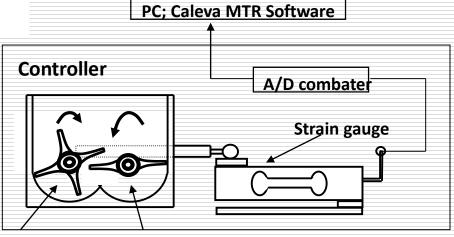
^{*);} estimated values by extrapolation



6. 結合剤用途への適用

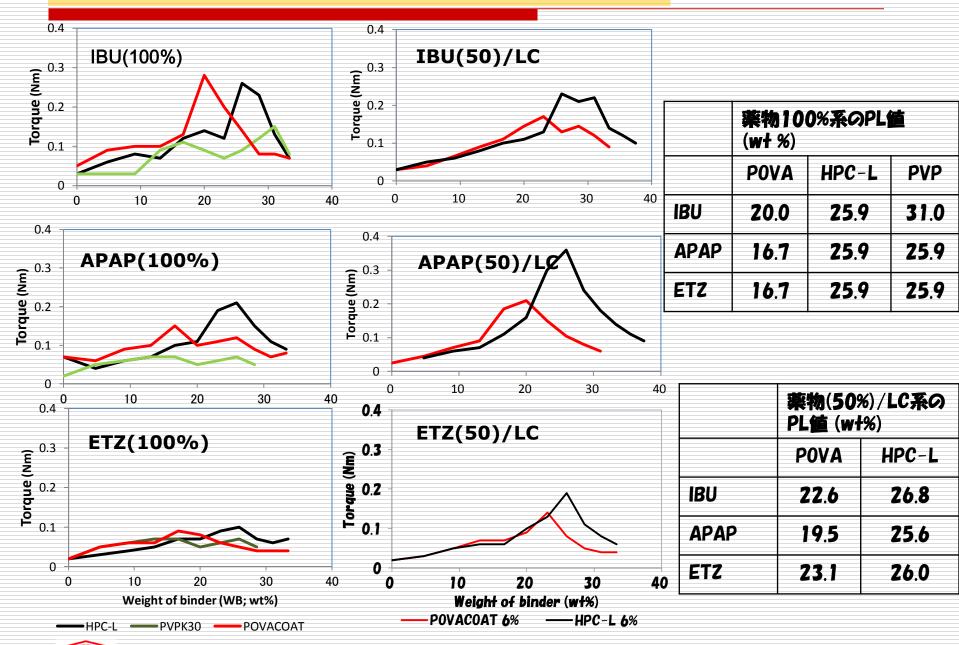
I 糊添加法 1)糊添加法の基礎物性(結合剤の濡れ比較)

固液気充填状態;処方(乳糖/コンス=7/3)

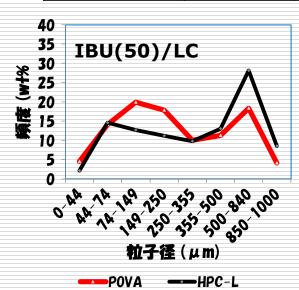

評価装置; MTR (Mixer Torque Rheometer)

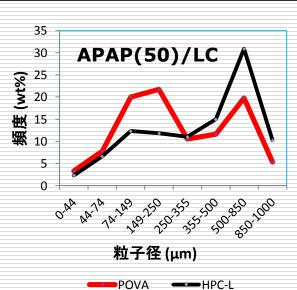
	7 K	POVA	HPC-L	PVP K30
可塑限界液量 (PL)(w+ %)	25.9	21.6	28.6	25.9

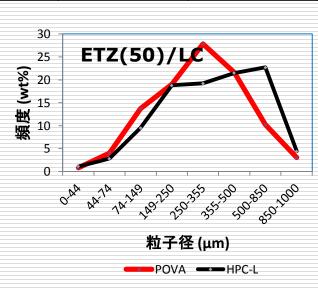
結合液濃度; 6%



Main Blade Auxiliary Blade




薬物含有系での濡れ比較 (L/C=7/3標準処方)



結合液濃度:6%

	IBU(5	IBU(50)/LC APAP(50)/LC		APAP(50)/LC		0)/LC
	POVA	HPC-L	POVA	HPC-L	POVA	HPC-L
lg (-)	0.66	0.69	0.66	0.65	0.64	0.64
D50 (μm)	214.3	350.7	237.0	413.0	297.2	347.3
σg (-)	3.01	3.23	2.67	2.58	1.88	2.03
D75/D25 (-)	4.76	5.24	3.98	3.75	2.29	2.52
% (74-500)	59.0	46.7	63.8	50.1	82.1	69.0
CI (%)	29.6	29.4	27.3	25.6	24.4	23.3
TSV (mL/g)	1.90	1.80	1.60	1.60	1.70	1.65

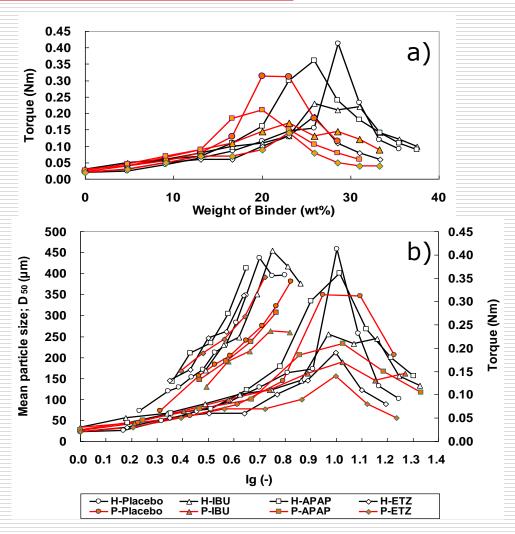
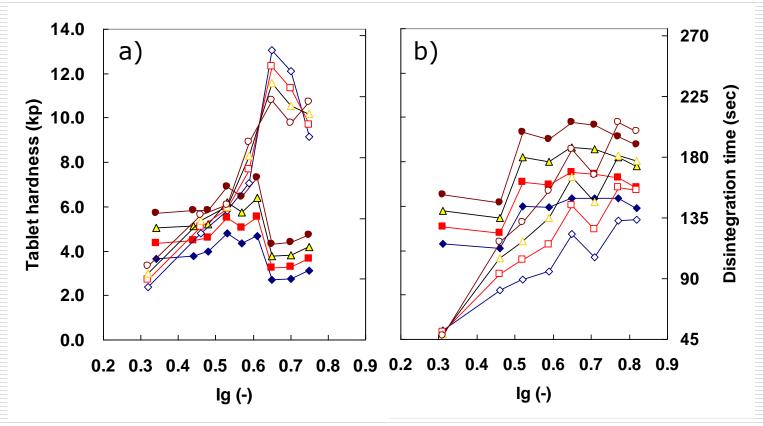



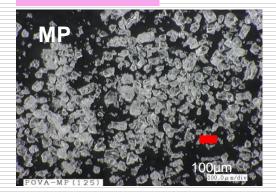
Fig. Results of torque patterns and D_{50} of drug formulations with Ig

- a); normal torque patterns against amounts of binder in weight %
- b); D_{50} and normalized torque against Ig

Tablet hardness (TH) at $\rho \spadesuit$; 1.36, ■; 1.38, \triangle ; 1.40, \bullet ; 1.42 Disintegration time (DT) at $\rho \diamondsuit$; 1.36, \Box ; 1.38, \triangle ; 1.40, \bigcirc ; 1.42

Fig. Tablet hardness and disintegration time at various tablet densities (g/cm 3) according to Ig for lactose/corn starch placebo formulation a): Binder; HPC-L 6 w/v %, b): Binder; POVACOAT 6 w/v %

			マンニトール系			
	St-Mg (%)	Placebo	IBU	ETZ	APAP	Placebo
POVA 6%	0		00	ΟΔ	Δ×	
POVA 12%	0.1					00
	0	ΔΔ		ΔΔ	Δ×	
POVA 22.2%	0.1	00		00	ΟΔ	
	0.2				00	
POVA MP5% (粉添加)	0.1				00	


Estimation

Non; OO, Slightly cloud; O \triangle , Cloud; \triangle \triangle , Cloud \sim sticking; $\triangle \times$, Sticking; $\times \times$

I 粉添加法 POVACOAT Type MP (POVA-MP) の溶解の特性

Appearance

Good dispersion in water

Table Powder properties

D ₅₀ (μm)	125	
TSV (mL/g)	1.80	
CI (%)	18.2	

D₅₀; Mean particle size

TSV; Tapped specific volume

CI; Compression Index

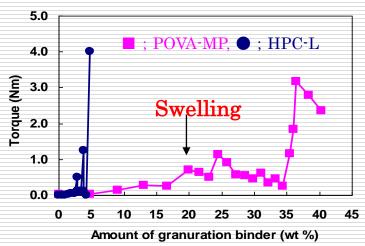
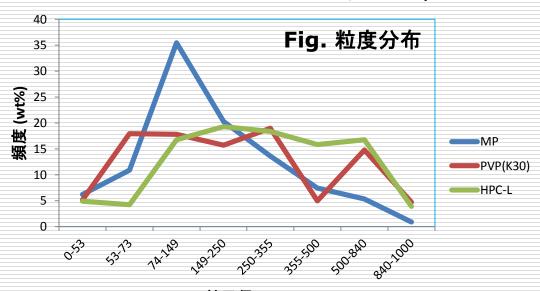


Fig. Swelling characteristics of POVA-MP


Apparatus; Mixer torque rheometer (MTR)

- POVA-MP is a free flowing powder.
- •POVA-MP dissolution process is composed with three steps; Fast dispersion (photo)/Swelling (figure for torque vs. water contents) /Dissolution

MTR造粒; 250rpm x 3min

Ingredient	MP
Ethenzamide (%)	30
D-Mannitol (%)	58
Ceolus PH101 (%)	5
L-HPC LH21 (%)	5
Binder(Powder)(%)	2
Ig; Binder(water) amount	0.60

粒子径 (μm)

Table Comparison of TH and DT

Binder	POVA-MP	HPC-L	PVP (K-30)
TH (N)	74	74	86
DT (sec.)	15	31	46

Tableting pressure;

hydraulic press in 11 φ flat shape corresponding to 4.6kN in the case of usual 8Φ tablet

Test method of DT; JP16 (purified water, 37°C)

Table Used formulation for performance experiment

Ingredient	MP
Ethenzamide (%)	30
D-Mannitol (%)	58
Ceolus PH101 (%)	5
L-HPC LH21 (%)	5
POVA MP (%)	2
PL value (wt%)	27.2
Binder amount (water)(wt%)	16.3

Two kinds of agitating wet granulator

MTR; VMT mode feed 40g 250 rpm High Shear Mixer: vertical granulator (POWREX VG-01)

feed; 300g

Blade: 250rpm

Chopper; 1500rpm mixing time: 3min

MTR VS. VG-01

Apparatus	Feeding (g)	Revolution number (rpm)	Granulation time (min)	Amount of granulation binder
MTR	40	250	3	Ig 0.6 (16.3wt%)
VG-01	300	250/1500	3	Ig 0.6 (16.3wt%)

Table Powder properties of granules

	MTR	VG-01
D ₅₀ (μm)	144	139
σg(-)	2.16	2.24
CI(%)	33.3	25.0
TSV(mL/g)	1.6	1.8

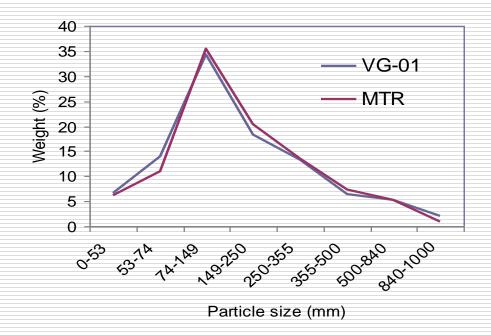


Fig. Particle size distribution

Table Tableting results for granules obtained by a VG-1

Ave. tablet weight (mg)	200.7
Weight variation; CV (%)	0.66
Ave. TH (N)	45.2
TH variation; CV (%)	6.8
Ave. DT (sec)	19.8
DT variation; CV (%)	5.8
Friability (%)	0.28

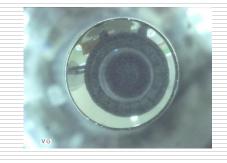


Fig Photo. of lower punch and die after 1hour tableting

Lubricant; Mg stearates 0.2%

Non sticking and die friction

処方;

ETZ/Man/PH101/L-HPC/MP=30/58~59/5/5/1~2

PL値; 27.2wt%、250rpm x3min (θ; 750)

at 4.6kN 8φ

MP(%)		lg 0.40	lg 0.50	lg 0.60
	硬度(N)	59	59	74
2.0	崩壊時間 (s)	10	13	15
4.5	硬度(N)	52	59	102
1.5	崩壊時間 (s)	12	10	25
	硬度(N)	51	60	86
1.0	崩壊時間 (s)	11	9	20

Stability of ODT is a problem issue in generally.

POVA-MP ODT is tolerable for a long term storage.

	10	Γ							
	9	-							
	8	-			•	→ 6	0°C759	%RH	
	7	F				 - 4	0°C759	%RH	
<u>~</u>	6	-				2	5°C60°	%RH	
TH (kp)	5		1	_					
Ė	4	Ē		*	_				
	3	-							
	2	-							
	1	-							
	0		- 1						
		0	30	60	90	120	150	180	210
					Storage	e (day)			

Fig. stability of TH

Ingredient	MP
Ethenzamide (%)	30
D-Mannitol (%)	58
Ceolus PH101 (%)	5
L-HPC LH21 (%)	5
POVA MP (%)	2

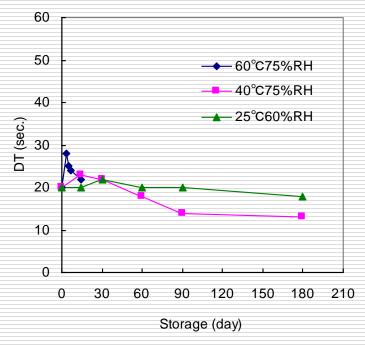
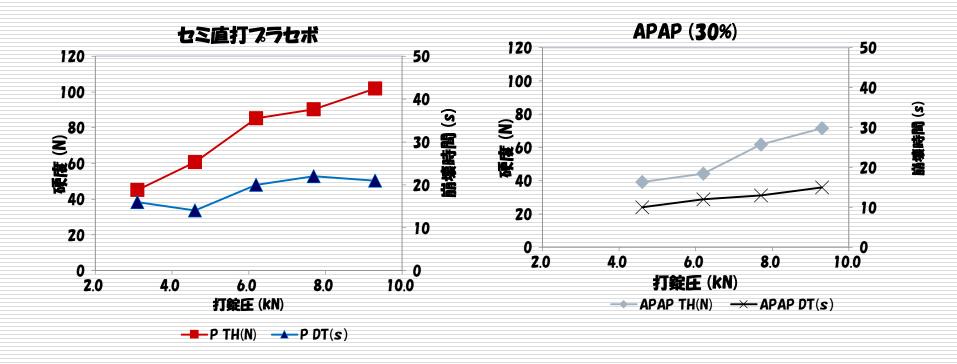
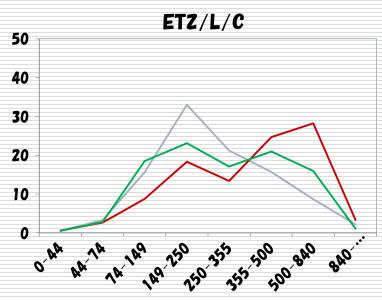



Fig stability of DT


処方; D-マンニトール/PH101/L-HPC/POVA MP= 82.9/7.1/7.1/2.9

PL: 26.7wt% Ig;0.60, MTR 250 rpm x 3 min

1)粒度分布がシャープ

ETZ/L/C=10/60/30(MP3% vs HPC-L3%)

Ig;0.60

ETZ/L/C MP3%

HPC-L**3**% 0 **875**(50rpm)

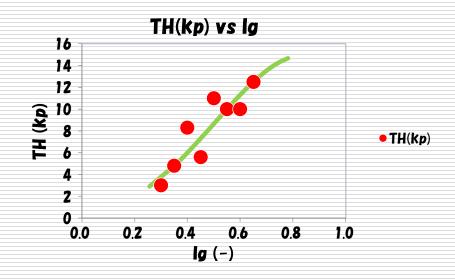
ETZ/L/C HPC-L3%

 θ ; 2700 (90rpmx30min)

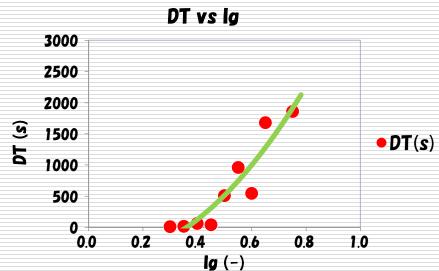
 θ ; 875(50rpmx17.5min)

	MP5	HPC-L5
硬度 (kp)	9.6	8.3
崩壤時間(sec)	223	595

Binder	MP3%	HPC-L3%	
θ	2700	2700	875
D50	243	391.5	281.3
σ g	1.85	2.01	2.04
CI(%)	28.8	25.5	24.2
TSV	1.85	1.90	1.70


打錠用顆粒としてもOK (崩壊時間)

結合液量の適正化により溶出のコントロールの可能性


成分	成分(%)
エテンザミド	30
D-マンニトール	58
セオラスPH-101	5
L-HPC	5
POVA-MP	2

MTR造粒(250rpm×10min)

成形;プレス

(at 4.6kN; 8 φ 200mgに相当)

造粒液量(Ig)を製剤目的に応じて使い分けることで様々な応用が期待できる

モデル薬物 :インドメタシン(IND)、相互薬工業製

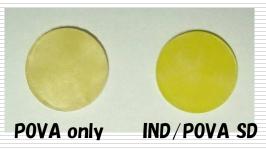
使用キャリア:POVACOAT Type MP(POVA)

実験装置 :超音波成形機(SONICA LAB)、I.M.A.社(イタリア)製

サンプル調製:IND及びPOVAを所定の割合で混合して、その1gに超音波照射を行うこ

とにより調製

〇超音波照射に伴い、振動エネルギーが高分子の内部エネルギー(熱)に変換


超音波吸収による発熱式

 $dT/dt = \alpha I / \rho CpJ e - \alpha d$

T:温度 t:時間 α:超音波の吸収係数 1:音波の強さ(w/cm²) ρ:密度 Cp: 定圧比熱 J: 仕事当量 d:超音波入射面からの距離

POVAは線形高分子であり熱可塑性を有する。

Daido Chemical Corporation

固体分散体調製結果

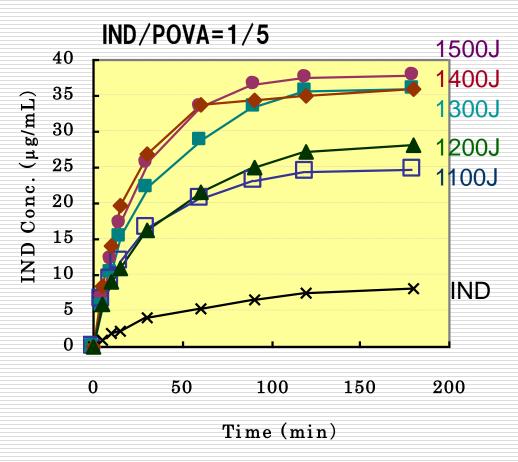


Fig. Dissolution profiles of IND/POVA (1/5)

 (\times) :IND crystals, (\square) : 1100J, (\blacktriangle) : 1200J,

(■): 1300J, (◆): 1400J, (●): 1500J

薬物含量の違いによる溶出性

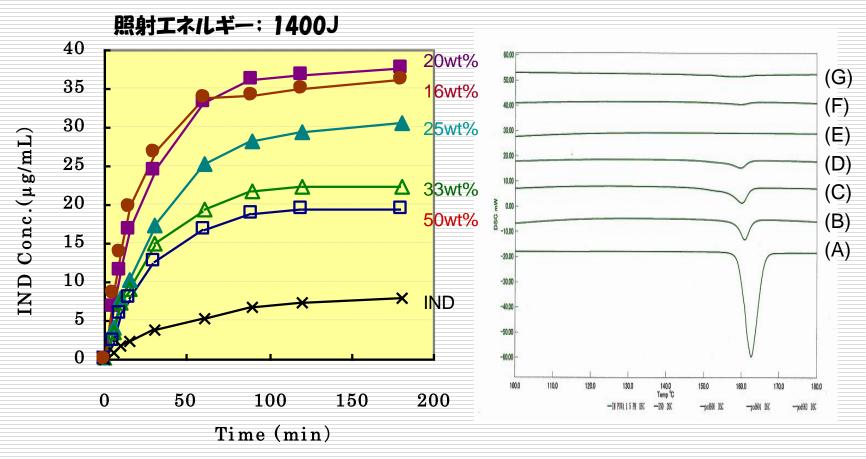


Fig. Dissolution profiles of IND/POVA

 (\times) :IND crystals, (\square) : IND/POVA=1/1,

 (\triangle) : 1/2, (\triangle) : 1/3, (\blacksquare) : 1/4, (\bullet) : 1/5

Fig. DSC patterns of IND/POVA

(A):IND crystals, (B): PM (1/5), (C): 1/1

(D): 1/2, (E): 1/3, (F): 1/4, (G): 1/5

再結晶化学動の確認

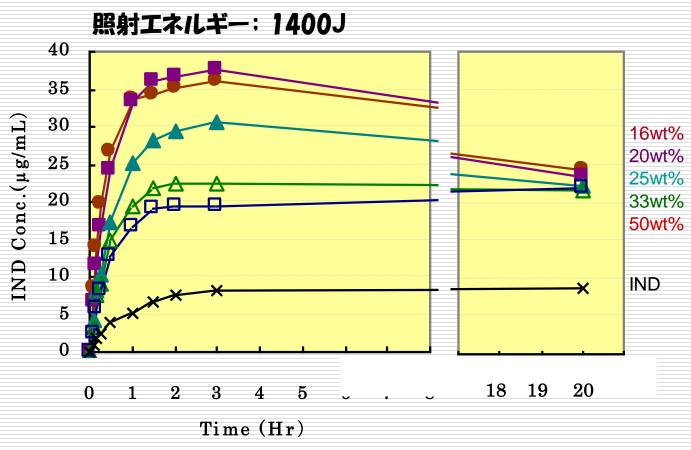
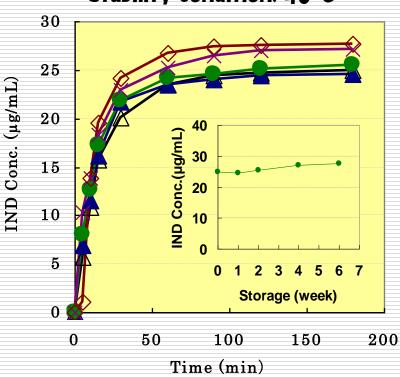



Fig. Dissolution profiles of IND/POVA

 (\times) : IND crystals, (\square): 1/1, (\triangle): 1/2, (\triangle): 1/3, (\blacksquare): 1/4, (\bullet): 1/5

固体分散体の安定性

Stability condition: 40 °C

 $(\mu g/mL)$ 20 IND Conc.(µg/mL) Conc. 30 15 10

3

Storage (week)

150

200

Stability condition: 40°C 75%RH Open

30

25

5

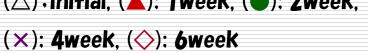
0

0

Fig. Dissolution profiles of IND/POVA

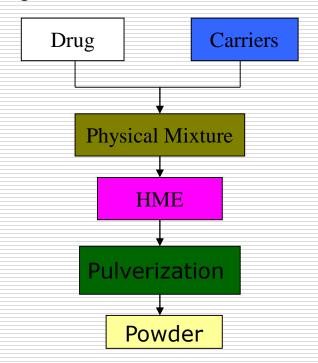
 (\triangle) : initial, (\triangle) : 1 week, (\bullet) : 2 week,

(×): **4week**, (♦): **6week**


Fig. Dissolution profiles of IND/POVA

100

Time (min)


 (\triangle) : initial. (\triangle) : 1 week. (\bullet) : 2 week.

50

(a)
$$-CH_2 - CH_{3k} + CH_2 - CH_{1}$$
 (b) $-CH_3 - CH_{3k} + CH_{2k} - CH_{3k} + CH_{2k} - CH_{3k} + CH_{2k} - CH_{3k} + CH_{2k} - CH_{3k} + CH_{3k} - CH_{3k} - CH_{3k} + CH_{3k} - CH_{3k} + CH_{3k} - CH_{$

Figure . Chemical structure of: (a) POVACOAT and (b) bifendate.

瀋陽薬科大学 Drug Development and Industrial Pharmacy

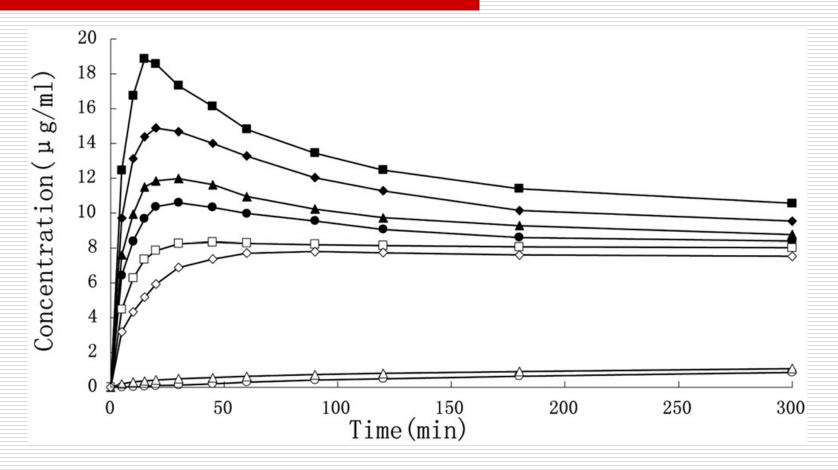


Figure . Dissolution profiles of the bifendate–POVACOAT system (■, 5% DDB-SD; ◆, 10% DDB-SD; ▲, 15% DDB-SD; ●, 20% DDB-SD; □, 30% DDB-SD; ◇, 50% DDB-SD; △, 10% DDB-PM and O, DDB).

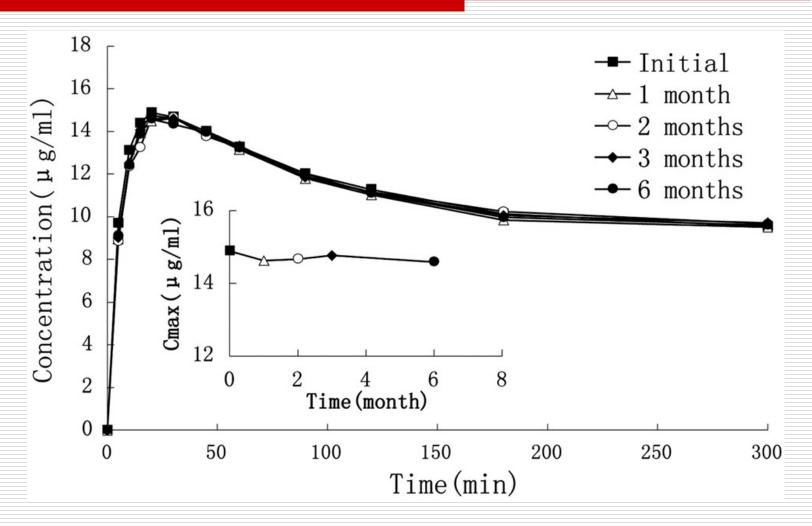


Figure . Dissolution profiles of 10% DDB-SD after storage and C_{max} at different months as a function of time.

ご清聴ありかとうございました。

大同化成工業株式会社

ライフサイエンス事業部 開発グループ

〒555-0011 大阪府大阪市西淀川区竹島4-4-28

TEL:(06)6471-7755(代)

FAX:(06)6472-2152

HP: http://www.daido-chem.co.jp/

E-mail:uramatsu@daido-chem.co.jp

